COST MODEL EQUATIONS USED IN THE UNIT COST ESTIMATOR ## A. DATA ENTRY Prompt user to enter data for the following (all fields shall initially contain default values): | Variable | Variable Definition | Default Value | Units | |-----------------------|---------------------------------|---------------|----------------| | Ор | Operating Hours per Day | 16 | hr/day | | DRE | Destruction Removal Efficiency | 0.98 | % | | DFR | Design Flow Rate | 3,000 | cfm | | Cont | Contaminant Concentration | 2,000 | ppm | | Gas | Natural Gas Cost | 0.715 | \$/therm | | MW _{cont} | Molecular Weight of Contaminant | 100 | | | MWair | Molecular Weight of Air | 29 | | | MW _{water} | Molecular Weight of Water | 18 | | | Electric | Electrical Cost | 0.10 | \$/kwhr | | Water | Water Cost | 3.00 | \$/100 cu. ft. | | Sewer | Sewer Cost | 3.68 | \$/100 cu. ft. | | Manifest | Manifest Cost | 125 | \$/drum | | Labor _{tech} | Technician Labor Cost | 37 | \$/hr | | Labor _{eng} | Engineer Labor Cost | 50 | \$/hr | # **B. CALCULATED PARAMETERS** $DRE_{adj} = IF(DRE \ge 0.98, 0.98, DRE)$. In other words, (If DRE entered ≥ 0.98 , \underline{true} : DRE_{adj} = 0.98, \underline{false} : DRE_{adj} = DRE entered) TWA (ppm) = [Cont * 75 + (Cont + 200)/2*50 + 200 * 240]/365 $Cont_{non\text{-}adsorption}/year = (TWA/1,000,000) * DFR * 1,440 * MW_{cont}/MW_{air} * 0.075$ * DRE * Op/24 * 365 $Cont_{non-adsorption}/day = (Cont_{non-adsorption}/year)/365$ Cont_{adsorption}/year = (TWA/1,000,000) * DFR * 1,440 * MW_{cont}/MW_{air} * 0.075 * DRE_{adj} * Op/24 * 365 $Cont_{adsorption}/day = (Cont_{adsorption}/year)/365$ Drums (# /day) = $(Cont_{adsorption}/year)/(62.4 * MW_{cont}/MW_{water}) * 7.48/55/365$ Steam (lb/day) = 3 * Cont_{adsorption}/day H2O (cu. ft./day) = Steam/62.5 Desorb (drums water/day) = H2O * 7.48/55 ### C. CAPITAL COST CALCULATION #### 1. Installation For Thermal Oxidation, Plasma Destruction, Photocatalytic Oxidation (system), Fluidized Bed Adsorption with PDU (system), Alkali Bed Reactor: Capital Cost_{DFR} = capital cost₃₀₀₀ + 0.35 * capital cost₃₀₀₀ * (DFR - 3000)/3000 where: Thermal Oxidation: capital $cost_{3000} = $256,830$ Plasma Destruction: capital cost₃₀₀₀ = \$431,830 Photocatalytic Oxidation: capital cost₃₀₀₀ = \$359,400 Fluidized Bed Adsorption with PDU: capital $cost_{3000} = $414,489$ Alkali Bed Reactor: capital cost₃₀₀₀ = \$365,000 For Catalytic Thermal Oxidation: Capital Cost_{DFR} = capital cost₃₀₀₀ $+ 0.35 * (capital cost_{3000} - catalyst frame_{3000}) * (DFR - 3000)/3000$ $+ $37,000_{\text{per }1000 \text{ cfm}} * (DFR - 3000)/1000$ where: capital $cost_{3000} = $359,400$ catalyst frame $_{3000}$ = \$111,000 For Flameless Thermal Oxidation: Capital Cost_{DFR} = capital cost₃₀₀₀ + 0.35 * (capital cost₃₀₀₀ – bed material₃₀₀₀) * (DFR – 3000)/3000 $+ $25,000_{per \, 1000 \, cfm} * (DFR - 3000)/1000$ where: capital $cost_{3000} = $415,000$ bed material₃₀₀₀ = \$75,000 For Vapor Phase Adsorption (Fluidized Bed Adsorber system): Capital Cost_{DFR} = capital cost₃₀₀₀ + 0.35 * (capital cost₃₀₀₀ – beaded media₃₀₀₀) * $(DFR - 3000)/3000 + beaded media_{3000} * (DFR - 3000)/1000$ where: capital $cost_{3000} = $425,000$ beaded media₃₀₀₀ = \$4,950 #### 2. Mobilization/Demobilization For each technology/system: $$Mob = (300 * Labor_{tech} + 40 * Labor_{eng}) + (150 * Labor_{tech} + 20 * Labor_{eng})$$ # 3. Total Capital Cost For each technology/system: Total_{cap} = Capital Cost_{DFR +} Mob ## D. O&M COST CALCULATION #### 1. Natural Gas For Thermal Oxidation: $NG_{TO} = 7,000,000 * Op/100,000 * Gas * DFR/3,000$ For Catalytic Thermal Oxidation: $NG_{CTO} = 3,000,000 * Op/100,000 * Gas * DFR/3,000$ For Flameless Thermal Oxidation: $NG_{FLO} = 4,400,000 * Op/100,000 * Gas * DFR/3,000$ For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed with PDU system: NG_{AD} = Steam * 1,164/100,000 * Gas/0.8 For Photocatalytic Oxidation: Not Applicable (value = 0) For Alkali Bed Reactor: $NG_{ALK} = NG_{CTO} * (662-60)/(900-60)$ For Plasma Destruction: Not Applicable (value = 0) # 2. Electricity For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation: $E_{OX} = 50 * Op * Electric * DFR/3,000$ For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Alkali Bed Reactor: $E_{AD} = 60 * Op * Electric * DFR/3,000$ For Photocatalytic Oxidation: E_{PCO} = 3,000 * 3 * 2 * 2 * (Cont – 100)/400/365 * Electric/0.07 * DFR/3,000 For Plasma Destruction: For Fluidized Bed Adsorption with PDU (system): $$E_{UV} = 118,973 * Electric/0.07 * (Contadsorption/day)/95479$$ #### 3. Water For Thermal Oxidation: $$W_{TO} = 90 * (Water + Sewer)/7.48/100 * Op * 60 * DFR/3,000$$ For Catalytic Thermal Oxidation: $$W_{CTO} = 48 * (Water + Sewer)/7.48/100 * Op * 60 * DFR/3,000$$ For Flameless Thermal Oxidation: For Vapor Phase Adsorption (Deep Bed Adsorber system), Fluidized Bed Adsorption with PDU (system): $$W_{AD} = H2O/100 * (Water + Sewer)$$ For Photocatalytic Oxidation: For Plasma Destruction: For Alkali Bed Reactor: $$W_{ALK} = Cont_{non-adsorption}/day * 10/62.4/100 * (Water + Sewer) * DFR/3,000$$ ## 4. pH Control For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: For Fluidized Bed Adsorption with PDU (system): For Vapor Phase Adsorption (Fluidized Bed Adsorber system): #### 5. Manifest For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: Not Applicable (value = 0) For Vapor Phase Adsorption (Fluidized Bed Adsorber system): MF_{FAD} = Drums * Manifest ## 6. Monitor & Preventive Maintenance (Labor, \$/day) For Thermal Oxidation: For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber): $$MPML_{TO} = 2 * Labor_{tech}$$ ## 7. Monitor & Preventive Maintenance (Material, \$/day) For Thermal Oxidation: $$MPMM_{TO} = 45$$ For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: $MPML_{OX} = 50$ For Vapor Phase Adsorption (Fluidized Bed Adsorber system): $MPML_{AD} = 66$ # 8. Unscheduled Maintenance (Labor, \$/day) For Thermal Oxidation: $UML_{TO} = 0.5 * Labor_{tech}$ For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber): $UML_{OT} = 1* Labor_{tech}$ # 9. Unscheduled Maintenance (Material, \$/day) For Thermal Oxidation, Flameless Thermal Oxidation: $UMM_{OX} = 5$ For Catalytic Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber): $UMM_{OT} = 10$ ### 10. Management For Thermal Oxidation: $$MGT_{OX} = 1^* Labor_{eng}$$ For Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor, Vapor Phase Adsorption (Fluidized Bed Adsorber): MGT_{OT} = 2* Labor_{eng} ## 11. Daily Operating Cost (\$/day) For each technology: Daily = sum of Items D1 through D10 above for each respective technology. ## 12. Annual Operating Cost (\$/year) For each technology: Annual_{op} = cost 4 day * 365 ### E. SUMMARY CALCULATIONS # 1. Amortized Capital Cost For Vapor Phase Adsorption (Fluidized Bed Adsorber system): Amortize Capital Cost assuming 10 years at 8% interest, or Amortize_{cap} = PMT(0.08,10,Total_{cap}) For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Fluidized Bed Adsorption with PDU (system), Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: Amortize Capital Cost assuming 5 years at 8% interest, or Amortize_{cap} = PMT(0.08,5,Total_{cap}) ## 2. Contaminant Removed (lbs) For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: $Removed_{OX} = Cont_{non-adsorption}/year$ For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed Adsorption with PDU (system): $Removed_{OT} = Cont_{adsorption}/year$ ## 3. \$/lb of Contaminant Removed For Thermal Oxidation, Catalytic Thermal Oxidation, Flameless Thermal Oxidation, Photocatalytic Oxidation (system), Plasma Destruction, Alkali Bed Reactor: $$hlteright $ (Amortize_{cap} + Annual_{op}) / Removed_{OX}$$ For Vapor Phase Adsorption (Fluidized Bed Adsorber system), Fluidized Bed Adsorption with PDU (system): $$h = (Amortize_{cap} + Annual_{op}) / Removed_{OT}$$